Exciting passive dynamics in a versatile bipedal robot

نویسندگان

  • Daniel Renjewski
  • Alexander Spröwitz
  • Jonathan Hurst
چکیده

Dynamic bipedal robots, which are capable of versatile behaviour, are rare. Most bipedal robots are either versatile and static or dynamic and limited to specific gaits. Over the last twenty years the bio-inspired spring mass model became a versatile template for bipedal walking and running gaits with many studies motivated by its high potential for versatile robot locomotion. However the characteristic dynamics have not yet been demonstrated with human size robots. We show that we can reproduce the dynamics of this versatile template for locomotion in a human-size biped utilizing its specifically designed natural dynamics. Spring mass walking with characteristic double humped force profiles is demonstrated over a range of speeds. Using the same controller, the robot exhibits grounded running, walks over steps, and in an natural outdoor environment. The robot is an important step towards bipedal machines capable to compete with animals in terms of efficiency, robustness and versatility and enables a better understanding of fundamental biological movement principles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot

This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...

متن کامل

Exploring the Lombard Paradox in a Bipedal Musculoskeletal Robot

Towards advanced bipedal locomotion musculoskeletal system design has received much attention in recent years. It has been recognized that designing and developing new actuators with the properties of the human muscle-tendon complex is only one of the many tasks that have to be ful lled in order to come close to the powerful human musculoskeletal system enabling the human to such versatile dyna...

متن کامل

The Evolution of Control and Adaptation in a 3D Powered Passive Dynamic Walker

Humans demonstrate speed, efficiency, and adaptability when traveling over rugged terrain. Bipedal robots modeled on biological designs could replace or assist people working in difficult environments. However, current research into humanoid robots has not produced practical machines. This paper explores the use of evolutionary robotics to evolve a simulation of a ten-degree of freedom bipedal ...

متن کامل

Control of Bipedal Walking Exploiting Postural Reflexes and Passive Dynamics

Compared to human locomotion capabilities, today’s bipedal robots are still lacking in efficiency, velocity, and robustness. Thus, a control concept for dynamic walking based on insights into human motion control is suggested. Key features include the exploitation of passive dynamics, no usage of a full dynamic model, and hierarchical, distributed control. Walking robustness in presence of unkn...

متن کامل

Semi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation

The research on the principles of legged locomotion is an interdisciplinary endeavor. Such principles are coming together from research in biomechanics, neuroscience, control theory, mechanical design, and artificial intelligence. Such research can help us understand human and animal locomotion in implementing useful legged vehicles. There are three main reasons for exploring the legged locomot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013